Class RidgeRegressionModel
source code
           object --+        
                    |        
          LinearModel --+    
                        |    
LinearRegressionModelBase --+
                            |
                           RidgeRegressionModel
A linear regression model derived from a least-squares fit with an l_2
  penalty term.
>>> from pyspark.mllib.regression import LabeledPoint
>>> data = [
...     LabeledPoint(0.0, [0.0]),
...     LabeledPoint(1.0, [1.0]),
...     LabeledPoint(3.0, [2.0]),
...     LabeledPoint(2.0, [3.0])
... ]
>>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
>>> abs(lrm.predict(array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(array([1.0])) - 1) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
>>> data = [
...     LabeledPoint(0.0, SparseVector(1, {0: 0.0})),
...     LabeledPoint(1.0, SparseVector(1, {0: 1.0})),
...     LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
...     LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
... ]
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
>>> abs(lrm.predict(array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
  
    | 
     Inherited from LinearRegressionModelBase:
      predict
       
    Inherited from LinearModel:
      __init__,
      intercept,
      weights
       
    Inherited from object:
      __delattr__,
      __format__,
      __getattribute__,
      __hash__,
      __new__,
      __reduce__,
      __reduce_ex__,
      __repr__,
      __setattr__,
      __sizeof__,
      __str__,
      __subclasshook__
       
     | 
  
  
    | 
     Inherited from object:
      __class__
       
     |